
1 of 6

Trusting Software: Malicious Code Analyses

Sam Nitzberg, et. al.

Abstract – Malicious code is a real danger to defense systems,
regardless of whether it is a programming flaw that can be
exploited by an attacker, or something more directly sinister in
nature, such as a computer virus or Trojan horse. Malicious
code can threaten the integrity, confidentiality and availability
of what was once thought-of as “trusted” software, which is the
heart of modern military information management/transport
systems. In a commercial-off-the-shelf/Common Operating
Environment-based environment, code can be clandestinely
embedded within a system’s software suite at most any time:
from development through segment/component integration,
distribution and operation. The U.S. Army Communications-
Electronics Command Software Engineering Center (SEC), in
support of the U.S. Army Command and Control Protect
Program, is actively involved with analyzing software to detect
malicious code. This paper discusses SEC’s activities – from the
current, primarily manual analysis at the source code level, to
plans for semi-automated tools and a discussion on existing
research into fully-automated analysis of both source and
executable code – for improving existing methods of malicious
code analyses and detection.

INTRODUCTION

Reference [1] lists Trojan horses, viruses, worms, insider
attacks, hackers and phreakers as being the basic threats to
military computer systems. Another bulletin [2] states that
“although insiders cause more damage than hackers, the
hacker problem remains serious and widespread.”

The old concept of a computer system’s vulnerability took
the form of malicious code, such as viruses and worms and
human threats both internal and external. These target the
weaknesses of a system and are applicable yet today.

However, old concepts fail to come to terms with the new
type of threat: a commercial-off-the-shelf (COTS) or free-
ware/shareware product that has been produced with
embedded malicious code or through coding practices that
allow exploitation.

The new threat has arisen because of the expanded use of
reusable code segments and the need for more economical
ways to meet the user requirements; e.g., the use of a
Common Operating Environment (COE). There has been a
wider acceptance of generic COTS and freeware/shareware
into secure environments. As a result, the vulnerability of
“trusted” systems to embedded malicious code attacks has
increased proportionally.

“Easter eggs,” seemingly harmless and playful software
embedded within other programs, are found in the most
common business software within the Department of
Defense, including mission critical defense systems. If it is
possible to “sneak” this self-contained software into other
software, why should it not be possible to add truly malicious
components to other legitimate software? COTS software
chosen for incorporation into defense systems has been

programmed in nations known to have the capability and
possible intent to initiate an information warfare attack on the
United States. Additionally, software developers have been
known to insert backdoors in software to aid in testing, and
disgruntled employees have been known to set software time
bombs after being fired. Software performs a trusted function
as the heart of mission critical defense systems. There is
therefore clear and present danger from malicious code.

Recently a L0pht Security Advisory [3], made this very
apparent where a password appraiser package was sending
the entire Microsoft® Windows NT® user password list
across the internet while supposedly checking the strength of
the users' passwords.

Another incident was reported in a recent Computer
Emergency Response Team (CERT®) Advisory [4], where
“…some copies of the source code for the TCP Wrappers tool
(tcpd) were modified by an intruder and contained a Trojan
horse … [which] provides root access to intruders initiating
connections … [and] upon compilation, … sends email to an
external address … [that] includes information identifying the
site and the account that compiled the program.”

These security issues are currently being addressed by the
U.S. Army Communications-Electronics Command’s
Software Engineering Center (SEC) through a practice of
malicious code analysis in support of the U.S. Army
Command and Control (C2) Protect Program. The C2 Protect
Program was established to improve the security posture of
defense systems. While some stylistic, understandability or
readability issues may be of concern, the focus of the analysis
has been to identify software coding issues related to
potential or concrete security impacts. Examples of these are
provided in the following paragraphs.

A. Worms

Worms are programs designed to replicate themselves and
cause execution of the newly copied version. A network
worm copies itself to another system by using common
network functions and then executes the copy on the new
system. Worms replicate by exploiting flaws in the operating
system or inadequate system management. They may cause a
denial of service or gain unauthorized access by drastically
reducing system resources, compromising confidential data,
or causing unintended system operation.

B. Viruses

Viruses are programs that infect other programs by
including a copy of the virus in the program. The virus
contains unauthorized malicious instructions and may attempt
to escape detection through polymorphism and other
techniques. Viruses are replicated when the infected program
is copied to another system via floppy disk, compact disk,
electronic-mail attachments, or downloaded from the Internet.

2 of 6

Depending on the virus it may be launched when the file it is
attached to is executed or when the system is booted from an
infected boot sector.

C. Trojan Horses

Trojan horses are programs that contain hidden functions.
They are often found in programs that otherwise provide a
useful function. When the program is executed, the Trojan
horse is launched, performing actions the user does not
expect or want. Trojan horses do not replicate, they rely on
users to install them and distribute them or intruders who
have gained unauthorized access.

D. Hostile Mobile Code

Hostile mobile code – like Java Applets, common gateway
interfaces (CGIs), or Active X – run and display inside an
HTML web page. Although some security mechanisms are
in place (e.g., constraining applet privileges within a
“sandbox” or alerting the user based on authenticode
certificates attached to Active X code), the mechanisms can
be broken and the malicious code containing instructions that
are damaging or unexpected can still be executed. They are
activated when the associated web page is executed.

E. Backdoors

Backdoors provide access to accounts and files. Backdoors
are established after the system’s security has been breached
and root access gained. Once a backdoor is established, it
allows the malicious intruder to easily reenter the system
further compromising data on the system, causing unintended
operation, and allowing the “at-will” wholesale destruction of
the system. This also allows a malicious user to use the
system as a launching point to attack other systems or as a
storage location in the future. It this way the malicious user
can evade detection from the “end system” under attack.

F. Coding Errors

Coding errors that cause race conditions and buffer
overflows can provide unauthorized access to the system.
Race conditions occur when more than one process performs
an operation and the result of the operation depends on
unpredictable timing factors. A race condition can give a

user the capability to write to a file when he normally would
not be able. For example, a race condition occurs when one
process is writing to a file while another process is trying to
read from that same file. Buffer overflows occur when
incoming data exceeds the storage space allocated, causing
the return stack pointer to be overwritten. A buffer overflow
allows the user to change the return address of a function and
thus change the flow of program execution.

G. Standard Coding Practices

Standard coding practices may expose the system to
vulnerability, whether the vulnerability is intrinsic to the
coding method or known operating system weaknesses.
Standard coding practices such as the use of strcpy() in the C
language allows the user to use this function to copy a string
from one array to another. The strcpy() function is
vulnerable to buffer overflows. However, the C function
strncpy() also copies a string from one array to another, yet it
limits the total length of the string that is copied and is not
vulnerable to buffer overflows when used properly.

There are many ways malicious code can be introduced

into a system, either intentional or purely innocent. During
software development, Trojan horses as well as race
conditions and buffer overflows can be introduced to the
software package. During installation of the system, viruses
and worms can be introduced. Even when building the
system, malicious code can be introduced via the compiler
software or other tools. The developer may have produced a
clean secure software package, but when the software
package is installed or built using a malicious environment,
the result could be damaging. Additionally, malicious code
can be introduced during the distribution of the software.
The distribution environment does not usually fall within the
bounds of malicious code analyses, but it is important to note
that the security of the distribution channel must be addressed
in order to obtain the full benefit of malicious code analyses.

The remainder of this paper discusses three basic
methodologies that SEC is currently using or researching for
malicious code analyses: (1) manual source code analyses/re-
view, (2) semi-automated analyses, and (3) fully automated
analyses. Table I shows the cost, efficiency and
advantages/disadvantages for each of the three basic methods.

The system to be analyzed must have software CM
procedures and processes put into place. The baseline system

TABLE I
MALICIOUS CODE ANALYSES METHODS AND ATTRIBUTES

Method Cost Efficiency Advantages Disadvantages
Fully
Manual

High Low • Staff maintains maximum knowledge of product
internals.

• Allows benefit of professional insight in code
review.

• Code reviewers may suffer from “code reading
fatigue,” reducing their accuracy.

• Team members may have differing levels of
sophistication.

Semi-
Automated

Mode
rate

Moderate • Introduces efficiencies and traceability into the fully
manual model.

• May be supported or interfaced with fully automated
support tools to identify specific threats present in
source code, as well as known safe pieces of code.

• No state-of-the-art breakthroughs are necessary.

• Still relies on manual efforts, subject to human
error.

Fully-
Automated

Low High • Based on known, documented principles.
• May be able to discover new attacks or mechanisms

based solely on models and templates of known hostile
characteristics.

• Repeatable.

• Will only provide results based on specific
parameters.

• Human insights may be lost.

3 of 6

must be identified, tracked, and controlled. The malicious
code analysis process has no value without stringent CM
practices being exercised during the development, building,
distribution, and installation of the software product. The
malicious code analysts themselves must keep the software
being reviewed under constant CM control.

In all three methodologies, an initial analysis must be
performed confirming that a complete system has been
delivered. Once that effort has been accomplished, the
malicious code analysis can begin.

MANUAL SOURCE CODE ANALYSES/REVIEW

The first step taken in the manual malicious code analysis
is to run available static analysis tools, which include sizing,
metrics, and textual-search tools. The sizing tool is executed
to organize the code modules/files and provide a line of code
count. The metrics tool is executed to provide a measure of
the code complexity. The textual-search tool is executed to
find commands, functions or phrases, (e.g., chmod, strcat,
and /etc/passwd) that alert the analyst to possible
vulnerabilities in the source code. In addition, ad-hoc query
scripts, debuggers, and trace statements can be used to locate
and study particular operations and program flow. Also, the
available system documentation is reviewed. Both tools and
the documentation are used to aid in the task analysis
breakdown and to gain in-house familiarity into the nature of
the system.

After familiarity is gained with the overall system, each
source file is analyzed line by line. Although not all
inclusive, as in [5], the following is a sampling of the types of
potential deficiencies looked for in the written code.

A. Password Protection

• Required passwords that are not properly safeguarded
• Code that sends passwords in the clear

B. Networking

1) Code that provides excessive access to files across the
network

• Code that opens ports that do not need to be open
• Items that may connect to systems or software

subsystems in an unsafe manner

C. File Permissions

2) Code that changes file permissions unnecessarily
3) Programs that take ownership of files that they should

not
4) Programs that access publicly writeable files/buffer/di-

rectories with potential for malicious exploitation

D. Minimum Privilege

5) Code that does not prevent abuse of required access
privileges

6) Code that is granted more than the minimum
privileges necessary to perform its function

7) Programs that provide shell access; these should be
considered suspect as they may be used to obtain
excessive privileges

E. Self Replicating/Modifying

8) Code that self-replicates across systems
9) Code that is self-modifying

F. Bounds and Buffer Checks

10) Code that does not have proper bounds and parameter
checks for all input data

11) Arguments that are not current and valid for system
calls

12) Code that uses unbounded string copies/arguments;
such code may be vulnerable to buffer overflows

G. Race conditions

13) Conditions where one process is writing to a file while
another process is reading from the same location

• Code that changes parameters of critical system areas
prior to their execution by a concurrent process

• Code that improperly handles user generated
asynchronous interrupts

• Code that may be subverted by user/program generated
symbolic links

H. Other Checks

14) Excessive use of resources
• Code that is never executed; such code may execute

under unknown circumstances/conditions, and consume
system resources

• Implicit trust relationships that could induce
vulnerabilities

• Code that does not meet functional security claims (if the
system purports to perform passwords/logs/security,
does the code actually perform those functions)

• Code that performs a malicious activity
• Code that uses relative pathnames inside the program

with a potential for accessing unintended files
including dynamically linked libraries (DLLs)

SEMI-AUTOMATED ANALYSES

Performing a fully manual analysis of all source code in a
large software system can offer significant if not total
assurances that malicious or otherwise malevolent code was
not injected into the software. However, the total line-by-line
code review of systems may be prohibitive in both time and
cost; worse yet, the effects of “code fatigue” on individuals
charged with reading every line of code in large systems can
degrade the assurances offered by a manual code review with
the effect that a false sense of security may be realized.
Included in this fatigue is susceptibility to psychological
tricks that may be presented in the software comments.

Semi-automated approaches could make use of programs
designed specifically to assist the code review analyst in the
task of reviewing these systems, especially in identifying and
locating potentially suspect program code. A program may
be constructed with which to semi-automate the overall
process; such a program could make use of the following four
components: a target word list and its respective database
facility, a database, a graphical user interface, and a report
generation engine.

4 of 6

A target word list would be maintained; each line of code
containing any of the “target” words would be flagged by the
program as requiring manual inspection due to their explicit
relevance to systems security. Examples of such “target”
words (for Unix systems) would include keywords such as:
/etc/password, chmod, chown, su, and chgrp.

A program is needed to then build a database by reading
the list of target words, as well as all program source code for
the system or program under study. All program source files
which contain one or more of the target words will be
identified as such and would have appropriate database
entries added automatically indicating the grounds for the
suspect code to be treated with due suspicion, i.e. the specific
target words which were identified. These entries would
contain relevant information, including: file name, file type
(e.g., C program file, C language header file, shell
programming script), the line number and any associated
target word(s) contained therein, a status flag describing the
present state of the file (not inspected, hazardous, safe, or
unknown), a comment field for analyst-generated comments
and concerns, anomaly information, lines of code and
complexity metrics. Date stamps will be incorporated to all
record creations and modifications, so that their histories may
be effectively logged and traced. A hybrid methodology
between semi-automated and fully-automated analysis could
incorporate a library of small independent programs, each
capable of identifying a specific type of anomalous code, and
injecting an appropriate record into the database.

A graphical user interface (GUI) is necessary for the
searching, selecting and displaying of source code files,
providing analyst annotations or comments relevant to the
source code files, indicating or changing the recorded status
of any files under study, and organizing the overall work into
tasks for the group to conduct the code study.

The system will provide facilities through the graphical
user interface to display any or all files of interest, most
importantly and vitally, those not yet deemed safe. For each
file, which is not “safe,” its database field description will be
provided. If the analyst clicks on any of these entries, the file
corresponding to that particular database entry will be
displayed, with the analyst automatically brought to the
particular line of source in question; the analyst shall at this
point be able to freely maneuver within the given file.

If the analyst wishes to declare the code “safe,” the analyst
will have the opportunity to do so via the user interface.
Further, the analyst at this point may elect to mark the code
as hazardous, suspect, or unknown, providing comments, or,
may elect to take no immediate action. Any “action” shall be
reflected by the system updating the database.

An efficient option may also allow for the analyst to select
a fixed number of lines appearing both before and after the
code in question, and for the system to automatically accept
as safe all identical clusters of code. Such an option could
hasten the reviewing of commonly repeated code segments,
such as those found in file headers, or chains of similar and
repetitive expressions.

Note that such user interaction may be readily provided
either through a web-browser type of interface, which could
make extensive use of hyper-links, or through a specific
application developed to meet this particular need. The
analyst will be able to maneuver freely through any code, or
to follow the links until all potentially anomalous lines of
code which were identified are determined by the analyst to
be hazardous, safe, or unknown.

A report generation program, made available to the analyst
through the graphical user interface would query the
database. A report would include statistics for the entire
program, including: total lines of program code and any other
metrics of interest, the number and nature of all “target
words” detected, and in what files, the number of detected
potential anomalies which were determined to be “safe,” or
any other information of interest which may be obtained from
the database records. Most importantly, the report generation
program would consolidate descriptions of all hazards
identified during the code review, facilitating a
comprehensive analysis of their significance and of any
necessary or corrective action to be taken.

FULLY-AUTOMATED ANALYSES

Although it can never be a magic bullet, a fully-automated
tool that can scan executables as well as source code will
greatly improve existing methods of malicious code analysis.
Most existing tools are platform-specific and are limited by
the fact that they use ad-hoc methods to detect known coding
vulnerabilities only. A fully-automated tool should be
capable of “testing” all software running on a platform, as
anti-virus software does, looking for distinguishing
characteristics that might be malicious code. It would be
integrated within a user-friendly GUI control panel and be
modular, allowing additional functionality as new threats are
identified.

When the tool identifies potential “bad code,” it would
alert the analyst to make the final decision as to whether the
code is really malicious – what may appear to be malicious
may in fact be the requirement of the software; e.g., deleting
all files in a “temp” directory set up by the program. This
feedback can be used to aid in future automated analyses.

Very often, rogue or flawed code is not detected with
simple test coverage methods. On the other hand,
exhaustively testing software is not practical either. More
efficient would be for the testing to just focus on global
properties of malicious software. While utilities such as
intrusion detection systems search for signature
characteristics of an attack, this automated analysis tool must
also consider characteristics of software vulnerabilities.

An existence of an exploitable vulnerability is a property.
Properties can be behavioral specifications or sets of generic
program flaws. The premise behind property-based testing is
that testing programs can be made more efficient and
automated if the analysis is concentrated just on the part of
the software that influences the property.

Prototype analyzers have been successfully developed
based on a property-testing approach to identify those
properties commonly displayed by malicious code [6].
Operating both in a static environment and at run-time to take
the dynamic environment into account, a mature tool could
conceivably inspect the code and locate such operations as
system calls, graph the data flows and processes, study the
arguments (taking into account aliases), and highlight code
that is suspicious. At the same time, a database of malicious
code behaviors can be assembled and maintained to provide
an even more comprehensive classification of code behaviors.

While acknowledging that it is impossible to develop a
perfect means of detection, it is possible to target and identify
a large percentage of malicious code behaviors. It is
expected that this approach will lead to the development of a
set of tools to also identify appropriate countermeasures for

5 of 6

specific properties that can be used to neutralize not one, but
potentially many coding vulnerabilities. In addition, it is
expected that this type of classification and code detection
will facilitate forecasting characteristics of currently
unknown vulnerabilities.

A. Components

The tool must be able to understand the software
operations. Therefore, the source or executable should be
translated into a readable, intermediate format (the executable
can first be disassembled before the translation). Next, the
tool could analyze the code variables to determine how
variables are allocated in the program, and perform a data-
flow analysis to determine relationships between variables.

Usually, only a small portion of a program impacts a given
property. It is envisioned that the tool could “slice” a
program with respect to a property to reduce its size during
testing. Program slicing is an abstraction mechanism in
which code that might influence the value of a given variable
at a location is extracted from the full program [7]. Slicing
isolates portions of a program related to a particular property,
e.g., filename generation, and reduces it into a manageable
size allowing confirmation of suspicious code.

Most changes to the security state of a program occur
through system calls, so the slicing criteria should be closely
related to these system calls. Predefined suspicious events,
such as attempting to open files, or change or inspect file
permissions, can be sliced. In other cases, the specifications
are on program variables, which then become the slicing
criteria. Code statements that are not reachable from main
entry point can also be identified.

The tool could include a tracking database to record and
generate statistics and reports related to all possibly
anomalous and inherently vulnerable code as identified by the
property-based tools. The database and its associated
environment will use data generated by the tool to provide a
series of hypertext links (or similar mechanism) to take the
user to the point in the code where the perceived coding
vulnerability exists. The human analyst would then have the
opportunity to investigate the perceived vulnerability to
determine and record whether it is indeed malicious, or
instead innocuous, for later tracking and accountability
purposes.

B. Properties

The tool would utilize a database populated with known
coding vulnerabilities’ properties. This information may be a
set of signatures, a set of environmental conditions necessary
for an attacker to exploit the vulnerability, a set of coding
characteristics to aid in the scanning of code for potential
malicious intent, or other data. The classification scheme
should be well defined and unambiguous. Determining
whether a vulnerability falls into a class requires either an “all
yes” or “all no” answer. Similar vulnerabilities should be
classified similarly, although, it is not required that they be
distinct from other vulnerabilities. Classification should be
based on the code, environment, or other technical details.
This means that the social causes of the vulnerability are not
valid classes. While valid for some classification systems,
this information can be very difficult to establish and will not
help in uncovering new vulnerabilities. Vulnerabilities may
fall into multiple classes. Because a vulnerability can rarely

be characterized in exactly one way, a realistic classification
scheme must take the multiple vulnerability-causing
properties into account.

Each vulnerability has a unique, sound property set of
minimal size. Call this set the basic property set of the
vulnerability. Determining the similarity of vulnerabilities
now becomes an exercise in set intersection. Using the
definitions and characteristics of the defined classifications
and properties suggests a procedure to locate vulnerabilities:
look for properties. When detected, the condition described
by the property must be negated in some manner. All
vulnerabilities with the same property are therefore non-
exploitable.

CONCLUSIONS

Bringing code inspection into contemporary truly mission-
critical military platforms with security in mind as a
paramount concern does demand that certain costs be borne,
but experience, inspections, and research suggest that
economies and efficiencies of scale and operations can be
achieved. Between the conventional, semi-automated, and
fully automated approaches being currently developed, the
facilities are being readied to ensure the trustworthiness of
source code from a security perspective. Historically, and
especially, in government domains, code inspections have
been considered a viable approach in ensuring that software
has possessed certain desirable characteristics, was devoid of
certain undesirable characteristics, and was generally of high
quality [8]. Malicious code analyses processes introduce an
additional opportunity to present CM version control to
COTS and after-market tools and software components which
may be critical to secure military computing. After all, in the
absence of CM version control and code review methods,
project managers and their developers do not actually know
precisely what has been installed on their platforms, or the
threats unleashed on their system – do they?

REFERENCES

[1] L.E. Bassham and W.T. Polk, “Threat Assessment of
Malicious Code and Human Threats (NISTIR 4939),”
National Institute of Standards and Technology
Computer Security Division, October 1992.

[2] “The Computer Systems Laboratory Bulletin,” National
Institute of Standards and Technology, March 1994.

[3] L0pht Security Advisory, L0pht Heavy Industries, 21
January 1999.

 [4] “Trojan horse version of TCP Wrappers,” CERT
Advisory CA-99-01-Trojan-TCP-Wrappers, CERT
Coordination Center, 21 January 1999.

[5] C.E. Landwehr, A.R. Bull, J.P. Mc-Dermott, and W.S.
Choi, “A taxonomy of computer program security flaws,
with examples,” Technical Report NRL/ FR/5542-93-
9591, Naval Research Laboratory, November 1993.

[6] G. Fink and M. Bishop, “Property-Based Testing: A
New Approach to Testing for Assurance,” ACM
SIGSOFT Software Engineering Notes, Vol. 22, No. 4,
July 1997.

[7] M. Weiser, “Program Slicing,” IEEE Transactions on
Software Engineering, Vol. SE-10, July 1984.

[8] D.P. Freedman and G.M. Weinberg, “Handbook of
walkthroughs, inspections, and technical reviews:

6 of 6

evaluating programs, projects, and products,” Dorset
Publishing Co., NY, NY, 1990.

